If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=1048
We move all terms to the left:
x^2-(1048)=0
a = 1; b = 0; c = -1048;
Δ = b2-4ac
Δ = 02-4·1·(-1048)
Δ = 4192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4192}=\sqrt{16*262}=\sqrt{16}*\sqrt{262}=4\sqrt{262}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{262}}{2*1}=\frac{0-4\sqrt{262}}{2} =-\frac{4\sqrt{262}}{2} =-2\sqrt{262} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{262}}{2*1}=\frac{0+4\sqrt{262}}{2} =\frac{4\sqrt{262}}{2} =2\sqrt{262} $
| w2=9,w2+9=0 | | -14x-8=8+4x+4 | | 2(2+6x=12 | | -7(7-3v)=39-v | | 6+a=6(1+8a) | | 24+3x=30 | | 20+2v=-5(-6v-4) | | (v+1)²+(v-3)²=15 | | 5y+44=2y×8 | | 0.4(x−1)+1=0.5x | | 8(1+6r)=6r+8 | | Y(y-10)=-21 | | 39+3p=-7(8-3p)+p | | 5(x+1)¹/⁴=10 | | b²+6b-8=0 | | 7^1-2x=4 | | 3∙(2x-4)=24 | | 6a²+24a³=6a² | | 2/4x-4=5/6x | | 3x/8+1/4=x-3/3 | | 27÷5=5t÷5 | | 1/8x+2=10 | | 39+7b=4(-6+7b) | | 2x+3=15+5x | | -4x(2x+5)+2x+3=-11 | | 2x+3=-15+5x | | 400=Sx20 | | 2x2+7x4=0 | | 4−3q=-10 | | -10x+8=-2x+48 | | 9a=10a+3 | | 11y−13=18 |